Twice-punctured Hyperbolic Sphere with a Conical Singularity and Generalized Elliptic Integral

نویسندگان

  • G. D. ANDERSON
  • T. SUGAWA
  • M. K. VAMANAMURTHY
  • M. VUORINEN
چکیده

We describe, in terms of generalized elliptic integrals, the hyperbolic metric of the twice-punctured sphere with one conical singularity of prescribed order. We also give several monotonicity properties of the metric and a couple of applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Weil-Petersson geometry of the five-times punctured sphere

We give a new proof that the completion of the Weil-Petersson metric on Teichmüller space is Gromov-hyperbolic if the surface is a five-times punctured sphere or a twice-punctured torus. Our methods make use of the synthetic geometry of the Weil-Petersson metric.

متن کامل

Rigidity and Stability for Isometry Groups in Hyperbolic 4-Space

Rigidity and Stability for Isometry Groups in Hyperbolic 4-Space by Youngju Kim Advisor: Professor Ara Basmajian It is known that a geometrically finite Kleinian group is quasiconformally stable. We prove that this quasiconformal stability cannot be generalized in 4-dimensional hyperbolic space. This is due to the presence of screw parabolic isometries in dimension 4. These isometries are topol...

متن کامل

Finiteness of the Moderate Rational Points of Once-punctured Elliptic Curves

— In the present paper, we prove the finiteness of the set of moderate rational points of a once-punctured elliptic curve over a number field. This finitenessmay be regarded as an analogue for a once-punctured elliptic curve of the well-known finiteness of the set of torsion rational points of an abelian variety over a number field. In order to obtain the finiteness, we discuss the center of th...

متن کامل

Bifurcation of limit cycles from a quadratic reversible center with the unbounded elliptic separatrix

The paper is concerned with the bifurcation of limit cycles in general quadratic perturbations of a quadratic reversible and non-Hamiltonian system, whose period annulus is bounded by an elliptic separatrix related to a singularity at infinity in the poincar'{e} disk. Attention goes to the number of limit cycles produced by the period annulus under perturbations. By using the appropriate Picard...

متن کامل

Numerical ‎S‎olution of Two-Dimensional Hyperbolic Equations with Nonlocal Integral Conditions Using Radial Basis Functions‎

This paper proposes a numerical method to the two-dimensional hyperbolic equations with nonlocal integral conditions. The nonlocal integral equation is of major challenge in the frame work of the numerical solutions of PDEs. The method benefits from collocation radial basis function method, the generalized thin plate splines radial basis functions are used.Therefore, it does not require any str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009